- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002100000000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Essa, Irfan (3)
-
Hahn, Meera (2)
-
Shi, Humphrey (2)
-
Sohn, Kihyuk (2)
-
Zhang, Gong (2)
-
Drnach, Luke (1)
-
Ting, Lena H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Few-shot fine-tuning of text-to-image (T2I) generation models enables people to create unique images in their own style using natural languages without requiring extensive prompt engineering. However, fine-tuning with only a handful, as little as one, of image-text paired data prevents fine-grained control of style attributes at generation. In this paper, we present FineStyle, a few-shot fine-tuning method that allows enhanced controllability for style personalized text-to-image generation. To overcome the lack of training data for fine-tuning, we propose a novel conceptoriented data scaling that amplifies the number of image-text pair, each of which focuses on different concepts (e.g., objects) in the style reference image. We also identify the benefit of parameter-efficient adapter tuning of key and value kernels of cross-attention layers. Extensive experiments show the effectiveness of FineStyle at following fine-grained text prompts and delivering visual quality faithful to the specified style, measured by CLIP scores and human raters.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Zhang, Gong; Sohn, Kihyuk; Hahn, Meera; Shi, Humphrey; Essa, Irfan (, Advances in Neural Information Processing Systems 37 (NeurIPS 2024))Free, publicly-accessible full text available December 1, 2025
-
Identifying Gait Phases from Joint Kinematics during Walking with Switched Linear Dynamical Systems*Drnach, Luke; Essa, Irfan; Ting, Lena H. (, 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob))Human-robot interaction (HRI) for gait rehabilitation would benefit from models of data-driven gait models that account for gait phases and gait dynamics. Here we address the current limitation in gait models driven by kinematic data, which do not model interlimb gait dynamics and have not been shown to precisely identify gait events. We used Switched Linear Dynamical Systems (SLDS) to model joint angle kinematic data from healthy individuals walking on a treadmill with normal gaits and with gaits perturbed by electrical stimulation. We compared the model-inferred gait phases to gait phases measured externally via a force plate. We found that SLDS models accounted for over 88% of the variation in each joint angle and labeled the joint kinematics with the correct gait phase with 84% precision on average. The transitions between hidden states matched measured gait events, with a median absolute difference of 25ms. To our knowledge, this is the first time that SLDS inferred gait phases have been validated by an external measure of gait, instead of against predefined gait phase durations. SLDS provide individual-specific representations of gait that incorporate both gait phases and gait dynamics. SLDS may be useful for developing control policies for HRI aimed at improving gait by allowing for changes in control to be precisely timed to different gait phases.more » « less
An official website of the United States government
